Computer simulation of the dynamic behavior of the glutathione-ascorbate redox cycle in chloroplasts.

نویسندگان

  • Edelmira Valero
  • María I González-Sánchez
  • Hermenegilda Maciá
  • Francisco García-Carmona
چکیده

The glutathione-ascorbate redox pathway in chloroplasts is a complex network of spontaneous, photochemical, and enzymatic reactions for detoxifying hydrogen peroxide. This article presents a comprehensive sensitivity analysis of the system. A model has been constructed to simulate oxidative stress conditions, enabling steady-state concentrations of the metabolites involved in the pathway and photochemical and enzymatic fluxes to be calculated. The model includes an electron source whose flux is distributed among three competitive routes (photogeneration of O2-, photoreduction of NADP+ to NADPH, and photoreduction of monodehydroascorbate to ascorbate) and that allows the simulation of variations in NADPH concentration with time. Each enzyme considered is introduced in the model, taking into account its particular catalytic mechanism, including the inactivation of ascorbate peroxidase in the presence of low-ascorbate concentrations. Computer simulations pointed to the great sensitivity of the system to the ratio among fluxes corresponding to ascorbate and NADPH photoproduction and NADPH consumption by the Calvin cycle. Under oxidative stress conditions, the model shows a sequential depletion of antioxidant power in chloroplasts in the order NADPH, glutathione, ascorbate and their recovery in the reverse order. Decreasing levels of glutathione reductase, ascorbate peroxidase, and superoxide dismutase led to the irreversible photoinactivation of ascorbate peroxidase and the subsequent increase in hydrogen peroxide concentration, preceded by a maximum in dehydroascorbate reductase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis.

The present study introduces metabolic modeling as a new tool to analyze the network of redox reactions composing the superoxide dismutase-ascorbate (Asc)-glutathione (GSH) cycle. Based on previously determined concentrations of antioxidants and defense enzymes in chloroplasts, kinetic properties of antioxidative enzymes, and nonenzymatic rate constants of antioxidants with reactive oxygen, mod...

متن کامل

Hydrogen sulfide protects coriander seedlings against copper stress by regulating the ascorbate-glutathione cycle, in leaves

  Heavy metals are the cause of major abiotic stresses in plants and a principal contributor to environmental pollution in recent decades. This study investigated the effects of exogenous hydrogen sulfide on the ascorbate-glutathione cycle in the leaves of coriander seedlings under copper stress. Results showed that copper stress not only reduced APX and GR activities but also decreas...

متن کامل

Redox regulation of photosynthetic gene expression.

Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in ...

متن کامل

Effect of silicon supplementation on wheat plants under salt stress

Heavy metals are the cause of major abiotic stresses in plants and a principal contributor to environmental pollution in recent decades. This study investigated the effects of exogenous hydrogen sulfide on the ascorbate-glutathione cycle in the leaves of coriander seedlings under copper stress. Results showed that copper stress not only reduced APX and GR activities but also decreased leaf AsA,...

متن کامل

Melatonin Increases the Chilling Tolerance of Chloroplast in Cucumber Seedlings by Regulating Photosynthetic Electron Flux and the Ascorbate-Glutathione Cycle

The aim of the study was to monitor the effects of exogenous melatonin on cucumber (Cucumis sativus L.) chloroplasts and explore the mechanisms through which it mitigates chilling stress. Under chilling stress, chloroplast structure was seriously damaged as a result of over-accumulation of reactive oxygen species (ROS), as evidenced by the high levels of superoxide anion (O2-) and hydrogen pero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 149 4  شماره 

صفحات  -

تاریخ انتشار 2009